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NUMERICAL SIMULATION OF THE AXISYMMETRIC
HOLLOWING INSTABILITY

I. Introduction

Because of the rapid ionization of the gas in the vicinity of the beam

head, a self-pinched electron beam may experience a large degree of current

neutralization.1 The repulsive forces between the beam and return current

lead to a number of instabilities, many of which have been studied in the

literature on beam propagation in high temperature plasmas.2 - 7 The

axisymmetric modes, while stable when the plasma current is small, can be

driven unstable when the plasma current is a large fraction of the beam

current. In a companion paper 8, we have shown that the inclusion of self-

consistent beam-driven ionization stabilizes the sausage mode for a beam

propagating into an initially unionized gas. Several numerical simulations,

however, have shown the existence of axisymmetric instabilities in a

significant range of beam currents and gas density. 9-I  We show in this paper

that those instabilities are not excitations of the sausage mode but of the m

- 0, n - 2 hollowing mode.1 2 Because there is no fully adequate analytic

theory for the hollowing mode, we have pursued a wide ranging simulation study

with two objectives: The first is to elucidate the destabilizing mechanism.

The second is to determine quantitatively the parameter range in which the

instability is expected. The instability turns out to be a subtle one

requiring large return current, strong avalanche ionization, and peaking of

the avalanche on axis. An outline of the paper is as follows: Section 2 is

a discussion of the simulation code; Section 3 presents the general features

of the instability in a uniform gas; Section 4 shows the importance of

avalanche as the destabilizing mechanism; Section 5 presents the dependence of

Manuscript approved January 28, 1983.
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the instability on beam parameters; Section 6 discusses improvements which may

be made in the conductivity model; Section 7 suggests a method of stabilizing

the mode; Section 8 discusses the status of experiments; and Section 9

presents the conclusions.

2
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2. SIMMO

The particle simulation code SIMMO (pronounced simm-zero) is an axially

symmetric "ring-in-cell" code in which a large number of charged rings are

followed in time as they interact with each other through the fields generated

by the particles themselves and by the background gas ionized by the beam.

We use the reduced set of Maxwell's equations derived by Lee 13 employing the

paraxial approximation and Doppler shifted coordinates. We neglect terms of

the order r/X a where r is a radial scale length and X is the betatron
-2

wavelength. We also neglect terms of order y where y is the relativistic

factor. We use as our independent variables z and 4 - ct - z where t is the

time and ct is the position of the beam head in space. The coordinate ; is a

measure of the distance along the axis from the beam head. With these

approximations we can write Maxwell's equations in the Lorentz gauge as

V 2il =- 4 1(1.L .1 c .1

21. A (2)

V 2 -4wp (3)

V z + -- --- 0 (4)± .i"  • - a.. ;

aAZ a~z + .0(5)

where X is the vector potential, * is the scalar potential, the subscript z is

associated with the axial direction and the subscript I is associated with the

radial variables r and 8.
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The electromagnetic fields can be obtained from the potentials from the

relations:

.1 Vl(6)

aA 
z

E -- (7)-z a a}

-- e z x (VA +-) (8)

B - [V1X1 ]z (9)

and the current densities are given by

I (10)

Jz =  bz + a Ez

where a is the scalar conductivity and Jbz is the beam current density.

Because of the paraxial approximation, Jbi can be neglected as a source term

in Maxwell's equation.

The dynamical equations are calculated in Cartesian Coordinates from the

equations

a()z mc (Az - *) (12)

" : 3 X. (13)
mc
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Because of the ultra-relativistic and paraxial approximations it can be

assumed that all beam particles have axial velocity c, so that beam dynamics

takes place only in the transverse plane. The fields are known on a regularly

spaced grid and are interpolated to the particle positions by a quadratic

scheme.

The code determines the conductivity a(r, ;, z) from the equation

3
0ma K + V a(14)

where the first term represents direct ionization by the beam and the second

term represents avalanche. We use the value
14

e an 1 8-4.
- m 8.48 x 10 cm/statcoul, (15a)m m a; J b

corresponding to an effective electron-molecule collision frequency for air

Vm - 1.414 x 10 
1 2(Te /leV)1 /2p sec -  (15b)

with an assumed electron temperature

T - 2eV, (15c)e

and the avalanche ionization coefficient specified for air as
15

S 2 sec-, (16)
1 + BS + CS + DS

where S E 2/p 2 , (17a)



E is the electric field in statvolts/cm, p is the air density in atmospheres,

and

A - 1.42 x 10- 4 , (17b)

B = 9.18 x 10- 6 , (17c)

C - 2.66 x 10- I0 , (17d)

-17(7e
D - 2.82 x 10 1 (17e)

Our usual initial condition is

a (r, 0, 0) - 0. (18)

The treatment of particle dynamics is well known so we will not dwell on it

here. The initial conditions are chosen so that the back end of the beam is

in equilibrium with the ionized gas. This is accomplished by choosing the

beam particles to have a Maxwellian distribution of perpendicular velocities

characterized by a thermal speed

lef f  (9
vth (19)

where Ieff is the net current associated with the mean pinch force, and is

calculated from the initial conditions, while IA N 1 7$y kA is the Alfven

current. The particle positions are chosen initially to correspond to a

Bennett distribution. As the beam propagates, the particles may evolve into

any configuration consistent with axisymmetry. Scattering of beam electrons
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by air molecules can be included in the code, but for most of the cases run

this feature is turned off in order to simplify the analysis. The result of

scattering is Nordsieck expansion of the beam.1 6- 18 Usually this occurs

slowly compared to instability growth, but we do discuss some cases in which

the onset of the hollowing instability is delayed, and slow increase of the

beam radius can influence the instability. Because scattering in the

simulation is the cumulative effect of a large number of small angle

scattering events over the length of a time step, we have treated the effect

by use of a probability function P[6(yv)] giving the probability that the

change of the momentum of a beam particle during a time step is 6(yv ). We

specify that

+ 2
P(6(yv)) a exp {82 .2

The distribution width is related to the increase in perpendicular energy of a

beam particle by scattering, SE, by the equation

S _ <S. 2m+

<( 'eVi)> - - <S(yv1) >

The quantity, SE, has been evaluated1 5 , 16 as

e 2 2CN

6E . 6t
2X

yme  r

where CN - 3.7 x 1019ergs/sec is the Nordsieck constant, 6t is the time

interval over which the scattering takes place, and X r is the radiation

length, given by

7



2 2 2 137) 1/3]-1

Xr - [4nZ(Z + 1) ( e2/ c)(e 2/mec2 ) In --3-- 3I

where n is the gas density and Z is the effective charge number of the gas.
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3. General Features of the Instability in Uniform Gas

Figure 1 shows a global picture of the instability evolution for a

typical unstable case, a beam with Ib = 20 kA, Bennett radius a = 0.5 cm (in

-9
the well-pinched part of the beam), rise time r 0.25 x 10 sec, and

electron energy E = 50 MeV propagating in uniform cold air at density 760

torr. The figure is a surface plot of r /2 (;,z), the median radius of the

beam slice at position behind the beam head, at propagation distance z.

Note that only the first 45 cm, i.e. 1.5 nsec, of the beam is shown, since the

instability grows so rapidly in ;. The beam is injected with Bennett radius

and perpendicular temperature independent of ;, i.e. uniform emittance. At

= 45 cm, the beam is fairly well matched to the net current and close to

Bennett equilibrium; initially it expands and oscillates at amplitude - 10'%

about the equilibrium value of rl/ 2 , due to a slight initial overpressure.

Near the pinch point ( 8 to 12 cm), however, there is considerably more

plasma return current, the net current is thus smaller and the beam is

significantly overpressured. It thus expands and oscillates at an initial

amplitude of - 50%. The instability grows out of these oscillations.

It is initiated a few centimeters behind the pinch point, and the waves grow

as they propagate backward in the beam, rapidly reaching very large amplitude.

This behavior is evident in Fig. 1, but is perhaps seen more clearly in Fig.

2, where rl/ 2 is shown as a function of z for four different beam slices at

8, 15, 25, and 40 cm.

The initiation of the instability at moderately large amplitude is

probably typical of experimental conditions, since it is difficult to

impossible to produce a uniformly well-matched beam. However the magnitude of

the initial mismatch does not appear to play any role in determining whether a

beam will go unstable. In other cases, we have taken care to match the

9



I .N i

R

R1/2 ' 0

~(cM)

Fig. 1 - Surface piot of beam median radius r1  as a function of z and ~,for a beam
with Ib = 20 kA, a =0.3 cm, rise time 0.25 nsec, propagatinga in air at ambient densitv.
The beam energy is 50 MeV. Scattering of beam electrons is not included.
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Fig. 2 - Plots of beam radius r1,2 as a function of z for various values
of , for the same case as Fig. 1
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initial conditions carefully so that the initial radial oscillations near the

pinch point are small. We then find that it takes a good deal longer (in z)

before the instability grows out of the noise, but that once it does the

subsequent evolution Is quite similar to that seen in Figs. I and 2. In no

case have we found an unstable set of beam and gas parameters to be stabilized

(or vice-versa) by changing the amplitude of the initial oscillations. We

thus infer that the observed wave growth is indicative of a linear

instability, although it is important to note that the phenomena that are

clearly visible in these simulation studies are associated with large-

amplitude nonlinear evolution of the instability; behavior in the small-

amplitude regime is largely obscured by noise, unless special techniques9 are

used to make it visible.

We note that the unstable region is behind the pinch point, so that

47'rac >> I throughout most of the region, and electrostatic neutrality

prevails. W e also note, to be elaborated later, that avalanche is important

near the pinch point, but that instability growth occurs mainly in a region

where E is relatively small and further conductivity generation is dominated

by direct ionization (except for cases at density 50 torr). Thus the main

premises of the calculation of our companion paper 9are satisfied. However

that calculation predicts that the sausage mode (m - 0, n -1) is stable in

the region of observed instability in the simulations with density P > 50

torr. This is our first indication that another mode is responsible for the

instability.

It is of interest to compare the evolution of the instability within each

beam slice as a function of propagation distance z (which can be thought of as

playing the role of time in beam dynamics), rl/ 2Cz) for various choices

of ; shown in Fig. 2, with the "snapshots" of the beam rj/ 2 (;) for various

12



choices of z shown in Fig. 3. We note first the behavior at = 8 cm, just in

front of the unstable region, shown in Fig. 2a. Here the initial radial

oscillations decay, as would be expected due to phase mixing. (Here = 8

lies just at the initial pinch point, and rl/ 2 slowly increases as erosion

proceeds. 1 ,1 9 Further back in the oscillations of rl/ 2 (z) go unstable, but

they remain coherent and roughly sinusoidal. At any given time the

oscillation frequency i is roughly equal to the betatron frequency at that

time. All of this is indicative of a narrow a-spectrum of unstable

oscillations, in agreement with the predictions of linear theory for all

return-current-driven instabilities. 12 Since the oscillation amplitude is

large, however, a number of nonlinear modifications occur. The betatron

frequency is inversely proportional to rl/2, which causes the wave period to

increase as the amplitude increases, and the wave form to be flattened at the

crests and sharpened at the troughs. The waves grow rapidly to catastrophic

amplitude (typically 1 10 oscillations), but wave growth is not exponential,

as would be expected in the small-amplitude regime. In contrast to the

behavior seen in Fig. 2, the plots of rl/ 2(;) in Fig. 3 show a disturbance

propagating back in ;, but with an irregular structure in ; that does not

single out any particular mode as dominant. This is again characteristic of

linear theories of the return-current-driven instabilities1 2 , which predict a

broad spectrum of unstable wavelengths in ;, ranging from about the local

value of ita r/2 /c to infinity. Any disturbance in this range that happens
1/2

to be initiated will grow.

*There are other ranges of beam and gas parameters for which the

instability does not occur. The distinction between stable and unstable cases

is very clear in an r 1/2 (',z) surface plot. Figure 4 shows a typical stable

case. It differs from the case of Fig. 1 only in that the beam current is 10

13



8 8

z 560 cm I z :600 cm

0 0r

0 45 0 45
(cm) (cm)

(a) (b)

8,

z 640 cm

- /,

\ I \ /

0 45S(cm)

(C)

Fig. 3 - Plots of beam radius r 1 12 as a function of " for various values
of z, for the same case as Fig. 1
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'500

0 ~ ~ (cm) 5

Fig. 4 -Surface plot of r, 2 i z' for the stable case =10 kA, a =0.3 cm,
rise time 0.2-5 nsec, propagating in ambient densitv air
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kA, rather than 20 kA as in Fig. 1. We see that the initial oscillations

simply decay away, due to phase mixing. At the borderline between stable and

unstable parameters, we find marginally stable cases where fluctuations

persist for a long time, but without any real growth. Later we shall give a

survey of stable and unstable cases and discuss the determining factors as to

stability.

Figure 5 shows surface plots of beam current density J b(r,0) at five

successive values of z, for the case of Fig. I. This diagnostic provides a

more detailed picture of the instability. We see that the unstable

oscillations are not at all like the sausage mode, i.e. like self-similar

radial oscillations of the beam. on the contrary, the instability begins in a

region where the net current in the central (near-axis) region has a downward

fluctuation, causing the pinch force to weaken and the beam to hollow out as

we move back in ;. At each subsequent oscillation, the beam profile

alternately assumes a hollowed annular shape and then a tightly compressed

shape strongly peaked on axis.

These observations strongly suggest that the observed unstable wave

growth results from a linear instability of the hollowing mode. However they

do not. absolutely exclude the m - 0, n -I sausage maode as a source of

instability, since various modes can be coupled in the large-amplitude regime,

and thus the observed large-amplitude hollowing mode could conceivably grow

out of an initial sausage instability. To determine whether there is any

involvement of the sausage mode, we have performed the following additional

simulation test. We modify SIMNO by calculating J b(r,4,z) from a beam

envelope of Bennett shape which expands and contracts self-similarly in

accordance with the envelope equations of Lee and Cooper16 rather than from a

collection of simulation particles. This permits the beam to oscillate in

16
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reasonably close approximation to the sausage mode, but not to distort as

required by the higher m - 0 modes. We then find that all cases studied are

stable, with r ,(;,z) plots similar to Fig. 4. We conclude that the sausage

mode is indeed stable, and that the instability observed is entirely due to

the hollowing mode. This conclusion is entirely consistent with our

calculation of Ref. 8, which indicates that the sausage mode should be stable

for this case. Unfortunately no fully adequate linear theory of the holl(cwing

mode is available at present. Thus we shall rely on simulations to elaborate

on the properties of the instability.

18



4. Importance of Avalanche as the Destabilizing Mechanism

Table 1 summarizes the results of a large number of simulations with Ib

varying from 10 kA to 100 kA and air density p varying from 760 torr to 10

torr. In all cases here the beam radius a = 0.5 cm, the rise time of Ib is

0.25 nsec, the beam energy is 50 MeV, and the beam propagates in uniform

neutral air. We note that a 10 kA beam with these characteristics is unstable

only for air in the density range 500 torr > p > 75 torr. The upper limit of

the unstable range would appear at first sight to be simply a requirement that

the return current fraction be large. We define an effective pinch current

leff in terms of the Jb-weighted pinch force,

Ieff fodr2r LJb(r)/Il 11rdr 2Tr LJb(r') + J (r'). (20)

If Jb(r) and J (r) have identical profiles, lef f reduces to I tb -p
p tof 'net I

but in practice the equilibrium profiles of Jb and Jp are very similar out to

one or two Bennett radii, while at large r, Jp(r) has a low-amplitude tail

that can carry a good deal of current while exerting little force on the beam;

hence the importance of distinguishing between Inet and leff .

Usually Jnet (0)/Jb(0) is a very good approximation to Ieff/Ib though. We

shall also find it useful to define an effective plasma current I Ib -pe b

leff* Uhm and Lampe 1 2 have shown that even in the worst case where 0(r) is

taken to be independent of and z, and Jb(r) has a flat-topped profile, the

hollowing mode is unstable only if

leff/Ib < 0.62. (21)

When the stabilizing effects of self-consistent conductivity evolution and

19



(U) Table I

Summary of simulation results for beams with well-pinched radius a 0.5 cm and

Ib rise time 0.25 nsec. In the last column, U and S indicate unstable and stable

cases, respectively.

Ib(kA) P (torr) leff/Ib E z/P Stability

100 760 .09 U

40 760 .18 .12 - .15 U

20 760 .35 .10 - .14 U

10 760 .5 .10 - .11 S

10 600 .49 .10 - .13 S

10 500 .48 .11 - .17 U

10 400 .40 .12 - .23 U

10 200 .27 .17 - .31 U

10 100 .22 .38 - .48 U

o 75 .21 .48 - .49 U

10 50 .20 .50 - .97 S

10 10 .08 3.8 - 9.0 S

20



rounded beam profiles are considered, one might expect -.o find a somewhat more

stringent instability condition. Indeed our simulation results, as reported

in Tables 1-3 and in other cases, do indicate that

Ieff/l b < 0.50 (22)

is a necessary condition for instability, and the requirement Eq. (22) would

appear to define a maximum air density for instability. However the situation

is really not that simple. Te 10 kA beam of Table I is stable at 50 torr and

even at 10 torr, where leff/lb is very small, so Eq. (22) is clearly not a

sufficient condition for instability. This is quite a surprise, and cannot be

explained by any of the preceding literature. A second surprise was found

when we repeated some of the simulation runs with avalanche turned off, i.e.

the second term of the conductivity equation (14) deleted. We then find all

cases to be stable, even those with leff/Ib very small, e.g. for lb - 700

kA, P - 760 torr as reported in Table 2. Thus the presence of avalanche is

essential to the instability.

To elucidate this puzzling dependence on avalanche, we have done some

further numerical experiments. Avalanche often dominates do/d; near the pinch

point, where Ez () has a sharp spike1 '1 9 , but typically is negligible further

back in the beam where most of the instability growth takes place, for air

densities > 50 torr. This is illustrated in Fig. 6, where

a(r - 0, C, z - 0) is plotted for the 100 kA case of Table 2 with and without

avalanche. To determine whether the small continuing contribution of

avalanche to faC/3 in the region C > 20 cm (where most of the instability

growth occurs) plays an important role, we ran a 40 kA case (see Table 2) in

which we replaced the second term of Eq. (14) with

21
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( " ¢avalanche V ail - exp (- 2/00)) (23)

i.e. we allowed the normal avalanche process to proceed for € 10 cm but

turned avalanche off rather sharply for larger values of .. This case was

found to be unstable, and in fact qualitatively indistinguishable from the

case with full avalanche. We thus conclude that avalanche is an essential

factor for instability, but only because it leads to a destabilizing initial

condition on z(r, ) that somehow preconditions further growth in ;.

The obvious way in which avalanche could lead jo instability is by

causing a rapid conductivity rise in the beam head, leading to increased

Ipe/ b, but this does not seem very convincing since we have shown that even

cases with very large Ipe/l b can be stable. To probe the mechanism further,

we tried another numerical experiment to determine whether modification of the

radial conductivity profile by avalanche is the crucial effect. Indeed

avalanche is normally strongest on axis, because the electric field Ez(r)

typically varies as '
19

E = 2n rl + b2 /a2  (24)
z  L I + r /a 24

and thus has a gentle peak at r - 0. LIn (24), b is the outer radius of the

conductivity channel, where 4 'or/c = 1; generally, b/a >> 1.j This weak

variation of Ez(r) has usually been ignored in theoretical models but could

lead to non-negligible radial variation of the avalanche coefficient Vi, which

from Eqs. (16) - (17), is a very sensitive increasing function of E/o. The

peaking of vi on axis would then tend to narrow the radial profile of

conductivity. To test this hypothesis, we replaced vi (r,,z) in Eq. (14)

by vi(0,;,z), thereby eliminating the on-axis peak of vi' but increasing the

22



(U) Table 2

Summary of simulation results. Either avalanche is included as specified in Eqs.

(14), (16) and (17), denoted "yes"; or avalanche is completely omitted, denoted

no"; or avalanche is turned off according to Eq. (23) for r >> 10 cm, denoted

partial".

Avalanche
Ib(kA) P(torr) a included? leff/b Stability

20 760 0.5 yes 0.35

20 760 0.5 no 0.40 S

100 760 0.5 yes 0.09

100 760 0.5 no 0.13 S

40 760 0.5 yes 0.18

40 760 0.5 partial 0.20 U

40 760 0.5 no 0.24 S

23
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(U) Table 3

Summary of simulation results where the well-pinched beam radius a is

varied. In the last column stable, marginally stable, and unstable cases

are denoted by S, S(M), and U, respectively.

MV /cm
Ib(kA) )(torr) a(cm) Ieff/lb E a Stability

10 200 0.5 .27 .16 - .33 U

10 200 1.0 .40 .09 - .21 U

i0 200 1.5 .46 .07 - .15

I0 200 2.0 .48 .05 - .11 S

10 760 0.2 .35 .11 - .15 U

10 760 0.5 .50 .10 - .11 S

20 760 0.5 .35 .10 - .14 U

20 760 1.5 .39 .03 - .06 S

24
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Fig. 6 -Conductivity a4rr0) as a function of , with avalanche included (solid curve) or
omitted (dashed curve), for a 100 kA beam with pinched radius a = 0.5 cm propagating
in ambient density air
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overall amount of avalanche. All cases studied then became stable. We

conclude that the hollowing instability is indeed triggered by conductivity

profile narrowing due to the on-axis peak of avalanche ionization. One can

well understand that conductivity narrowing would lead to narrowing of the

profile of J p(r) compared to Jb(r), and thus weaken the pinch force in the

central core of the beam, thereby exciting a hollowing of the beam.

This analysis can also explain the absence of instability in the 10 torr

case of Table 1. Here E/P is very strong, and avalanche is very rapid, but

according to Eqs. (16)-(17) the sensitivity of the avalanche rate

) i to E/, that is d 2n v /d 2n (E/P), becomes relatively weak. Apparently

the resulting on-axis conductivity peaking is insufficient to excite the

instability for E/p above some critical value.

Given the insight that instability occurs if the peak value of E/P in tie

E spike is large enough to excite strong avalanche, but not so large as to

weaken the radial peaking of vi, we have searched the "data base" provided by

the simulations of Tables 1 and 3 for an empirical instability criterion. We

find necessary and sufficient criteria for instability to be that Eq. (22) is

satisfied and that at the same time

130 kV/cm-atm < E/P < 500 kV/cm-atm (25)

at the Ez spike. Usually (but not always) Eq. (22) is satisfied if Eq. (25)

is satisfied. As will be seen later, these criteria summarize the instability

threahold as a function of Ib9 p, a, rise time, and beam energy E. In order

to determine whether the instability criteria are satisfied, it is not

necessary to run a particle simulation code; a fast running axisymmetric

envelope code will suffice, although such a code will never actually show
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instability growth. The reader is cautioned, however, that the initial values

at z - 0 of E/P and leff/lb can be misleading. Typically E/P increases and

Ieff/Ib decreases as erosion proceeds, so that an initially stable beam can go

unstable as z increases.
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5. Dependence of the Instability on Beam Parameters

We have seen that increasing the beam current tends to lead to

instability. Other parameters which may affect the stability properties are

the equilibrium beam radius, the rise time of the current, and the beam

energy.

The peak magnitude of the electric field near the pinch point decreases

if the beam radius is increased and other beam parameters are held fixed. The

consequent reduction in avalanche strength also tends to decrease the plasma

current and thus raise leff/Ib, particularly for beams with Ib - 10 kA is

reduced-density air. (The effect is much weaker for higher-current beams in

full-density air.) This suggests that the unstable range seen in Table 1, 500

torr , 75 torr for a - 0.5 cm, can be shifted to lower pressures by

increasing the beam radius. This suggestion has been verified, as is seen in

Table 3, which shows some cases identical to those of Table I except for the

beam radius a. We note, for example , that a beam with Ib = 10 kA, P = 200

torr is marginally stable with a - 1.5 cm and is distinctly stable with a =

2.0 cm. In this case both instability conditions Eqs. (22) and (25) fail when

a = 2.0 cm. For ib = 20 kA at P - 760 torr, a beam with a = 1.5 cm is stable;

even though condition Eq. (20) is satisfied, the avalanche condition Eq. (23)

is not.

Except for beams with extremely short rise time (< 0.2 nsec), the pinch

point initially falls in a region near the beam head where Ib is well below

its peak value. The height of the E. spike and (to a lesser degree) the value

of Ieff are determined by the value of lb .t- the pinch point, not by the

nominal beam current. Thus beams with slower rise time are often found to be

stable in their initial state because E/P is too small to satisfy Eq. (23),

even though a very fast-rising beam with otherwise the same parameters (Tables
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1-3) is unstable. The beam radius may change during propagation because of

Nordsieck expansion due to the collisions of beam particles with the

background gas. 16- 18 If the effect of Nordsieck expansion is negligible on

the time scale of interest, the height of the E. spike typically increases

appreciably as the pinch point erodes back in the beam and thus moves into a

region of larger Ib . As a result, a beam which is initially stable can go

unstable at a liter time when E/P becomes large enough to satisfy Eq. (23).

On the other hand, if Nordsieck expansion causes the radius to increase

appreciably on the same time scale on which Ib is increasing at the pinch

point, the EZ spike may never become large enough to satisfy Eq. (23).

Figure 7 shows the median radius r1 /2 ( ,z) for a beam with Ib - 10 kA,

energy 50 MeV, rise time 0.25 nsec and pinched radius 0.5 cm propagating in

500 Torr air with scattering turned on. The pinched radius increases with

propagating distance, and the beam is stable due to the effect of Nordsieck

expansion. A comparison with Table I shows that a beam with these parameters

is unstable if scattering is not included.

To our knowledge, the instability depends on the beam energy only through

the effect that nose erosion and Nordsieck expansion have on delay onset. For

cases in which the instability occurs promptly, the beam energy appears to

have no effect on the instability threshold.
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Fig. 7 - Plot of beam median radius r 1 ,2 (s,z) for a beam with Ib  10 kA. ener "

50 MeV. rise time 0.25 nsec and initial pinched radius 0.5 cm, propagating in 500

torr air. Note the increase of rt 2 with z, due to Nordsieck expansion, which is re-

sponsible for the stability of this case.
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6. Delta-Ray Contributions to Conductivity

The conductivity physics embodied in Eqs. (14)-(17) is very crude, and

was chosen primarily for simplicity and to facilitate comparison with code

work at other laboratories. Two obvious improvements would be to use a

temperature-dependent formulation 14 for a, and to use a more accurate

formulation of the avalanche ionization which has recently become

available. 14 We plan to re-examine these points in future work. It appears

that they result only in fairly small numerical changes in the instability

thresholds, and not in fundamental changes.

On the other hand, it would appear that significant stabilizing effects

might result from the inclusion of delta-ray contributions to the plasma

conductivity. Delta-rays (i.e. high-energy secondary electrons) can in some

situations (particularly at reduced density), spread out the deposition of

beam energy so as to broaden the profile of plasma conductivity, delay the

process of energy deposition, and carry significant current themselves.

Modeling of these phenomena has been a subject of recent interest, but

quantitative results are, for the most part, not available yet. We have

therefore chosen to test the first of these effects (conductivity spreading)

by introducing a simple parametrized model, and varying the parameter to

simulate various degrees of nonlocal beam energy deposition. To this end, we

replace Eq. (14) by

a(r, 4,z) - c fO dr'2nr Jb(r', )( )-6) exp L- (r - r') /R,,

+ v (r,;,z) a (r,;,z); (26)

R 6 is then some assumed average delta-ray mean free path.
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We find that for a typical unstable case, Ib - 20 kA, P 760 torr, a

0.5 cm, the beam can be stabilized in this way, but only for R, :, 2a. For

smaller values of RS, the delta-ray spreading effect is simply overwhelmed by

the effect of avalanche. This is rather more delta-ray spreading than would

be expected, except possibly for small radius beams in low density gas, so

this does not appear to be an important stabilizing mechanism - although a

final decision should await numerical evaluation of delta-ray effects in

various parameter regimes.
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7. Stabilization by Emittance Tapering

According to the analysis of Sec. 4, the hollowing instability is

triggered by a slight narrowing of the conductivity profile, as compared to

the beam profile, in the crucial region behind the pinch point. If the beam

parameters could be altered in such a way as to broaden the G(r)

profile there, the instability could be avoided. Since a(r) at a given €

depends on the beam profile at earlier C-points, one way to do this is to

prepare a beam whose emittance decreases with increasing ', so that the beam

radius tapers down from the head of the beam. We have tested this hypothesis

by running a simulation with Ib - 10 kA, P = 100 torr, and equilibrium beam

radius given by

a(;) - (0.5 cm) i1 + 3 exp - /(7.5 cm) 2. (27)

This beam was found to be stable, even though a beam with uniform emittance

and with the same radius at the pinch point (1.0 cm) would be unstable, and

even though both instability criteria Eqs. (22) and (25) were satisfied.
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8. Status of Experiments

The principal experimental data available at present are from the FX-25

diode beam experiments 20 at Livermore several years ago. The beam's nominal

parameters were Ib = 10-15 kA, electron energy 1.5-2 MeV, pulse width - 30

nsec, risetime 5 nsec (but steepening to - I nsec after propagating under some

conditions). The propagation experiments concentrated heavily on the low-

density regime 1-20 torr, although densities up to 500 torr were examined.

Increasingly strong hose instability was observed as the density was increased

above 10 tort. At densities well above 20 tort, the beam was essentially lost

after propagating less than 0.5 m; this was attributed to hose. At still

higher densities, our analysis would predict hollowing instability for the

very fast-rise-tine cases. There are no reported observations of the

hollowing mode, but it should be noted Lhat at the time of the experiment the

axisymmetric modes had not been analyzed and interest was focused on the hose

instability. Perhaps more to the point, in an unconditioned diode beam such

as the FX-25 hose can be initially excited at large amplitude and would thus

destroy the beam rapidly enough to obscure the hollowing mode, which could

also have been present. Experiments in this regime with a well-conditioned

fast-rising beam from the ETA accelerator2 1 , which should be available in the

near future, are more likely to be dominated by hollowing instability rather

than hose.

The theoretical situation at air density < 10 torr is a bit uncertain at

present. Our initial simulations with short segments ( 2 nsec) of fast-

rising beam pulses, e.g. the 10 torr case of Table 1, showed striking

stability, in agreement with the experimental conclusions available. However

in recent work we have been exploring a wider range of parameters and longer

beam segments in an attempt to define appropriate low-density experiments that
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could be performed at the present time. We have found several cases where

axisymmetric instability develops in the simulations, but the instability is

typically slower-growing and may not be the same type of hollowing instability

discussed in this paper. Also, plasma currents that are not described by the

simple conductivity model of Eqs. (14) - (17) may play a role in this regime,

as mentioned in Sec. 6. It is our intention to defer detailed discussion of

axisymmetric instability in this low density regime, and implications for past

and present experiments, to a separate report.
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9. Conclusions

We have demonstrated that under certain conditions a beam propagating in

air is subject to a strong axisymmetric hollowing instability. When the

instability is present, it grows a few centimeters behind the pinch point and

effectively destroys the entire beam within a few meters of propagation. The

instability occurs when there is strong avalanche which peaks on axis and thus

causes the plasma return current to flow with a narrower profile than the

beam; this leads to the condition that E/P be in the range 130 to 500 kV/cm-

atm at the E. spike at the pinch point, Eq. (25). It is also necessary that

there be a strong plasma current (leff/Ib < 0.50), Eq. (21), but this is

usually guaranteed by the presence of strong avalanche. These two conditions

delineate, for a beam of uniform emittance propagating in uniform air

described by the simple conductivity model of Eqs. (14) - (17), a regime of

instability that depends on the three parameters Ib (at the pinch point), P

and a. The unstable density range runs from 75 to 500 torr for a fast-rising

10 kA, a = 0.5 cm beam, and shifts downward for beams with larger radius, as

seen in Table 3. If the instability conditions are not satisfied initially

because !b at the pinch point is too small (for cases of long rise time), they

may be satisfied at a later time when the pinch point erodes I '19 back to a

region of higher !b; however Nordsieck expansion1 7 can frustrate this process

by simultaneously increasing a. To determine whether a particular set of

parameters satisfies the two instability conditions it is not necessary to run

a full axisymmetric simulation; an axisymmetric envelope code will do.

We expect some weak dependence of the stability limits on the values of

the direct and avalanche ionization coefficients and the electron mobility

used in the conductivity model Eqs. (14) - (17). This has not yet been

explored in detail. We have shown that radial conductivity spreading due to

36



delta rays could in principle stabilize the instability if the effect were

strong enough, but that the amount of spreading expected does not appear to

have a strong effect.

kJthough these simulations have elucidated the physics of the hollowing

instability, a linearized normal mode theory would significantly increase our

understanding. We are working to develop such a theory at present.

A variety of additional studies are in progress, including the effects of

plasma current modifications due to recombination, temperature-dependent

collision cross-sections, and nonlocal electron transport, and more detailed

and extensive simulation modeiing of actual experimental pulse shapes and

dependence on rise time.
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